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Recent DSN Svstem Performance Test requirements (for pending missions) contain
implied long-term measurements for which existing noncoherent test models are
inadequate. The new models needed are those of the first two moments, mean and
variance, of doppler noise under long-term conditions, and in noncoherent test mode.
In this paper, the newer model for variance, the Allan technique, now adopted for
testing, is analvzed in the subject mode. A model is generated (including considerable
contribution from the station secondary frequency standard), and rationalized with
existing data.

A mean-frequency model is subsequently proposed, based on data available, but this
model is not considered rigorous. It is an introductory idea, to be evaluated and
incorporated if proved valid. It uses a fractional-calculus integral to obtain a quasi-
stable result, as observed, with integrable spectrum poles.

The variance model is definitely sound; the Allan technique mates theory and
measure. The mean-frequency model is an estimate; this problem is yet to be
rigorously resolved. The unaltered defining expressions are noncovergent, and the

observed mean is quite erratic.

I. Introduction

DSN site doppler noise measurements, in noncoherent
mode, do not fit existing models. New models for variance
and mean-frequency are outlined in this paper.

Initially, the doppler counter and data processing are
explained, and their expression as a frequency transfer
function for Allan variance developed. Next, spectral densi-
ties are discussed, and the transfer function above combined

with these to yield an Allan variance model. The model
parameters are iterated with (DSS 11) data to define the
variable model parameters, and a specific result for the site is
plotted.

The mean-frequency function is then investigated
(nonconvergent-integral), and a fractional filter proposed.
Based on this filter, and an unknown parameter, an expres-
sion for the mean frequency is presented.
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ll. Doppler Counter Operation and Phase
Data Reduction: Mean and Variance

The doppler counter input is a replica of the receiver
carrier, phase-differenced with the exciter carrier (appro-
priately frequency translated), with mixing such that this
input centers on a nominal 1.0 or 5.0 MHz bias frequency.
All system phase variation, deterministic or random, appears
as a composite time variation of phase, transformable to a
phase-frequency spectrum, on the bias carrier. Phase varia-
tion (degrees, cycles, or radians) is referenced to the nominal
phase of the bias frequency.

The counter ignores the amplitude of the input waveform.
It simply registers, or counts, positive-going zero-crossings
(cycles) of the input, and, upon receipt of a release data
time pulse, resolves the (final) count to 10 nanoseconds, or
0.01 cycle at 1.0 MHz (3.6 deg), then releases data.

The time between release data pulses is the preset mea-
surement period, . The counter thus inregrates the phase-
frequency continually, releasing the integral to date at each
Nt time-series increment NT. It does not automatically
reset; the count is cumulative. The output count is thus a
very large number, containing all cycles counted since last
(arbitrary) manual reset. The format is a series of decimal
digits:

XXXXXX XXXXXXXXXX - XXX =, (readout)
S—— —TN S ———
time accumulated resolver count

[1 X 1079 s of bias
cycle, resolution]

cycle count

expressed as waveform functions (bias integral linear):

t
A(t) = input waveform = asin| P +Br+f @ (t)dr
0
NT
e, =&, +tBNT+ j (1) dt (resolver incorporated)
0

The desired data consists of the difference between
successive values of the trailing integral. This is the deviation
from nominal; the integral of the phase frequency across a
measurement period. This data time series is:

oy WNT) = @ - @~ BT (by data reduction)
NT (1)

¢ (1) dt
(N-1)T

1!
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The set {apN} is processed to yield mean and variance of the
data over a block of M measures [block period 7 = MT]:

D
1
Sk
M=
£

@

Also, for nonstationary mean:

Fo = @)n).He, = (@, - &, - MBT)/r

where F¢ is the system phase-frequency
offset.

lll. Allan Variance Data Processing

The Allan variance technique, newly adopted for DSN
testing, is a variation of Eq.(2) where the mean, 7, is set to
only 27', and collective variance of sequential data pairs is
averaged. This technique leads to expression of non-stationary
data expectation by stationary spectral models; the variance
measure is, in general, stabilized as a rational function of T.
Variance becomes:
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Eq. (3), therefore. is the quantity to be predicted by the
spectral model; further variance discussion will be limited to
this technique alone.

IV. Allan Variance General Model and
Filter Functions

Expected value of measures obtained from Eq. (3) can best
be modeled as some combination of noise spectral densities of



various orders (order in this paper is the order, or exponent, of
the (predominant) denominator term of the density), as
filtered by the counter-data-reduction process. To start,
assume the variance contribution of an arbitrary noise source,
as filtered:

by

E(o}) = Ky H, (o) I+ IFGw) deo  (4)

where
N = Nth noise source index
K., = noise constant
H\(jw) = spectral density function

F(jw) = counter/data process frequency transfer
function (Allan variance)

integral frequency limits, or/

aN,bN= arbitrary
cutoffs.
The filter function is invariant with noise spectrum,

depending only on sample period 7. We derive it from its
Laplace time transform for a single Allan measurement:

F(S) = {1 ~e"S"l - '; [1 ~e2STJ (5)
N N—— oo
sample mean

This simply states that each measurement of the waveform is
differenced with its value 7T earlier, with mean over 2T
subtracted; a parallel to elements of Eq.(3). Eq.(5), by
manipulation, leads to the desired transfer function:

| () = % [1+cos (2wT) - 2 cos (wT)]*?

+2‘l: [sin (2wT) - 2 sin (wT)]

I

{[cos2 (wT)] + [sin? (wT)]} [1-cos(wT)]?

[1- cos (wT)]? (Allan variance only) (6)

Expression {(6) is remarkable in that its leading term is of
fourth power, assuring convergence of integrals with spectral
densities up to and including that order. Equation (6) thus
enters Eq. (4) as the defined transfer characteristic, leaving the
spectral densities and constants to be determined.

V. Noise Spectral Densities and Sources

When doppler noise is measured under strong-signal coher-
ent conditions, variance is small, stationary, and consists only
of system residual sources, lumped as «pg. The standard
deviation of this residual is only a few degrees (3 deg typical),
and is assumed present in all test configurations. It is
background noise, undoubtedly the rms combination of a
number of minor sources. It is carried here as a single
parameter, to be determined during model-data fit iteration. It
is flat noise, order zero.

When the test configuration is altered to the noncoherent
strong signal mode, very large nonstationary elements appear
in the data. The predominant element is a strong quasi-stable
mean. This mean, divided by the sampling period, represents a
nearly stationary phase-frequency (F¢, Hz), or slope that often
holds within %5 percent for several hours, then suddenly
changes state by ratios as much as 50:1. The mean behavior is
analyzed later in this discussion. The Allan variance technique
largely avoids these mean effects, as they influence variance;
the mean is short-term.

The presence of the long-term mean does. however, indicate
a dominant third-order spectrum, often called 1/F noise
(referred to integrator inputs). However, during short measure-
ment periods, the variance is approximately linear, indicating
second-order source or sources. By reference to specifications,
it was determined that the prime latter-source was the
secondary standard; it literally swamped the variance for T of
ten seconds or less, while giving third-order indications at
longer periods.

To complete the set, assume some second-order contribu-
tion for system sources other than the standard. Before
forming the model using these spectra. an analysis of spectral
continuity of frequency standards in general is pertinent. The
orders for this and the system are shown in Table 1.

VI. Frequency Standard Noise Models

The phase-noise contribution of frequency standards in the
system is well understood to be large during short measure-
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ment periods, settling finally into a third-order spectral mode
during longer periods.

Published frequency variance data indicate some combina-
tion of second- and third-order phase-power spectra. The
question is whether both spectra are continuous and over-
lapping, with saturated integrals, or whether the composite
spectral density crosses over from third order to second order
form at a particular defined frequency; the second order
integral subsequently continuous to saturation. When the
latter is assumed, it is often replaced by a break-point time
approximation. The frequency variance is considered log-
linear with time before the break-point, and subsequently
constant. The break-point measurement time varies from
30 seconds to 300 seconds with common standards of various
quality.

The three models are outlined in Table 2, and results for
the present DSN primary standard are shown in Fig. 1.

Model 2 (see Table 2) was obviously chosen, for it rides
below the maximums, but is otherwise very close to the
published break-point data. It appears that frequency standard
noise is best modeled as sequential, rather than continuous,
power spectral density orders.

During non-coherent test mode, results of Fig. | cannot be
applied directly, for the site secondary standard is in use. The
standard exhibits frequency variance that is much degraded
over that of the primary standard. Also, definitive specifica-
tions are not available.

However, Model 2 was still assumed to apply, but with
different cross-over frequency () and amplitude constant.
These were given bounded ranges by degrading the primary
standard data by one-half to one order of magnitude. Within
these ranges, the parameters were iterated with the other
system model estimates and data, as described later in the
discussion.

VIl. Final Allan Variance Model and
Parameters

Since Model 2 of Table 2 was chosen for the standard, the
same form (spectral cross-over) was finally chosen for the rest
of the system. The choice was hardly trivial; the other models
did not fit the data. The two models differed only in the
selection of the amplitude constants and crossover {requencies.
The final total model is (the spectral model of Eq. (3)):
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E {0}, = (npo)2 (residual)
[1-cos (x)]
+K T[ ¥3 dx system
sources
KT =L 2
40 / {1 - cos (x)] d
w 2
w,T
(7
w T 2
+KT2/ ¢ 1~ cosx]
N X3
0 secondary
standard
+1\sT /wCT [r- cosx]2 d
w
¢ 7o
K., K, = noise amplitude constants, (deg/sec)? - (rad)?
w,,w, = crossover frequencies, (rad/sec)
T = measurement time, sec

The four main constants (K, w,, K, w_)and ¢, interact,
and no solution would be possible unless their ranges could be
bounded. Extrapolation of known frequency standard data to
apparent secondary standard degradation gave such bounds to
K, and w . It was obvious from data behavior that w, was
much greater than w,_: system 1/F noise predominated over
any possible standard contribution at long measurement
intervals.

Four prime data points were used for iteration (to
minimum rms error, normalized, model vs data), but several
lower-confidence points were used as checks (all within
£ 10%). The prime data points were (from DSS 11) as listed in
Table 3.

Iteration was a manually aided machine variation of param-
eters technique, using Eq.(7) where, for each combination
increment the sigma error of each point, and normalized rms
error of all points, was calculated.! The points are those for a
single site (DSS 11); other parameters would apply elsewhere.

The iteration data were as listed on Table 4.

Final fit of Eq. (7) to data, using Table 4 values, is shown in
Fig. 2. The figure displays the long-term stationary parameter

TFor use with Eq. (7),
programmed.

series solutions of the integrals were



o/T, rather than o directly. To obtain o in degrees, the
ordinate must be multiplied by T.

A program is planned to incorporate Eq. (7) and the
iteration process into a station performance test algorithm.
Finally, a discussion of F¢ behavior and its implications
follow.

VIIl. Noncoherent Doppler Mean and Mean
Frequency

The doppler phase noise mean value is simply the difference
between the last and first total phase measure over a (long)
block period, 7. The mean frequency, F@, is this measure
divided by 7, normally expressed in Hz. The counter/data
process filter transfer function for this quantity contains a
sine-squared term:

1-e°7

FM (s) =

[1 - cos (wr)] 2y [sin (cor)]2 (8)

4 sin : ((%T)

Concentrating on F¢ (since the block mean is not used for
Allan variance), the expressions consist of substituting Eq. (8)
in Eq. (7) and dividing by 7.

IF,, Gl =

This total model becomes (less ¢, which is mean-zero), and
expressed in Hz?:

2
AN
. (4@) by

T

B G P
(360)> 7, X?

Ky = sin? (x)d_
a2 T & 9)
(JJUT (3()0) (“’07)/2 X

A A(wr‘r/2) L2
P j sin ” (¥,
(360 7, X’
. ]\s i - sin’ (X)d‘c

w 7 (360)? w,r/2) X2

Now, when

1/T<<cuo,<.uC [7 > 100 sec]

The x? (order 2) integrals become insignificant. Also, since w,
K w,, in any definitive solution of Eq.(9), the initial
integral will predominate. We can thus say, with reasonable
certainty that — F¢ is a third-order system effect, essentially
independent of all dyvnamic frequency standard spectral noise.

This does not mean that the standards are free of
contribution; F¢ is a dc frequency offset; a phase accumula-
tion. It simply means that dynamic (short-term-time-variant)
frequency-standard contribution is ruled out: F¢ and its
variations are very-long-term processes, largely unspecified. In
a mission sense, F¢ is the station doppler (velocity) error, a
contribution, during tracking, to the overall spacecraft velocity
error.

Admitting to both third-order system effects, by model,
and unmodeled standard frequency offsets (a third-order
contribution), we restate Eq. (9), in Hz?, as:

(WpT) . 2
2 _ £77 5in” (x)

E(Fo), | = Cy f ) g (10)

i 0 X

where
N = index of Nt" value of F¢
Cy = prevailing offset magnitude constant during meas-
ure N, (Hz)? - (rad)?

wp = to coin a term. “the £¢ noise bandwidth,” or

average frequency beyond which mean and F¢
contributions are insignificant. If you placed a
low-pass filter at w,, F¢ would not be signifi-
cantly affected.

£

Expression (10) has a magnificent drawback: it does not
converge at the origin. [t simply says “F¢ is infinite” [-log
(0)]. a straight vertical phase slope. forever. This does not
synchronize with reality.

The problem of this model non-convergence vs real meas-
ures has been investigated in many ways. The major conclusion
has been that Eq. (10) does not represent any real spectrum
when « is very very small, and measures show that statistical
generalizations no longer apply.

One approach, in particular, is to insert a sharp high-pass
filter within Eq. (10). It attenuates the ambiguous region and
converges the integral. Such a filter, generalized, has been most
lately expressed in detail by Greenhall (Ref. I) in connection
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with VCO spectral density estimates, where linear trends have
been subtracted.

Assuming some-such general high-pass filter (steep enough
to have no significant effect on the variance measure), we
restate Eq. (10) as

WET 2
E(Fo), | = Cy j sin” ) . G (x)dx
3
T 0
G(x) = a high-pass filter, plus added

form to express observed (an
data.

. _ x > Ax

for no effect on variance G(x) = 1 {Ax « 1}

The applicable form of G(x) was approached here by a
survey of DSN site F'g behavior, as gathered from noncoherent
doppler test data.

F$ behaves in a peculiar manner (one look at Eq.(11)
would suggest this). It maintains a fixed value for hours, then
suddenly jumps to a new value, entirely different. The time
integral, or phase waveform, is a series of constant slopes with
sharp break points to new linear values. Such a break is plotted
in Fig. 3, detected during a four-hour test at DSS 1.

Data are too scarce to estimate accurately any periodic
sequence to this behavior. However, F¢ appears to be
absolutely statistically bounded: its various states seem (o fall
within probabalistic regions, with (at least close to) a mean of
sero. The DSS 11 data showed a standard deviation of about
0.07 Hz. (6 samples: mean = 0.02 Hz; 4 month scattered data
samples).

Since a given F¢ value persists for such a long period, it
appears quasi-stable, and any filter leading to its model must
contain, upon integration, a quasi-stable constant component,
applicable over (long) discrete time intervals.

The only known integrands that yield direct constants are
those of fractional form. We thus assume that

Assumption 1:  “G(x). near the origin, results in an
integral of fractional form, yielding a
constant quasi-stable integration order.”

This suggests that some system function fractionally inte-

grates the low-frequency end of the spectrum. This source. if it
exists. is indeterminate.
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Accepting F¢ as a mean-zero convergent random variable,
its time waveform has, inherently, a finite Fourier transform,
but resolveable over only over very long time periods
(months). If mean-zero, the time-transform would, by assump-
tion, show no dc component. Thus:

Assumption 2:  “G(x) must attenuate the pole at the origin
(contain a high-pass filter) to represent the
data. Data indicate an integrable pole at
zero.”

The third assumption, a virtual corallary to the first, is that the
spectrum must contain a pole at all times, other than (or in
place of) that attenuated at zero. The fractional integral of
assumption 1 requires a definitive pole. Let the pole symbol be
wy,. The pole w, need not be constant. It is sufficient that its
time period be that of the differential £¢ break points. Thus,
if a Fourier transform were taken over this interval, the w,
component would far surpass all others in amplitude; that is, it
would be the “pole of the measure.” This is certainly
sufficient for a daily tracking period in site operational use.
The assumption is therefore:

Assumption 3:  “G(x) must contain a quasi-stable finite
pole, defining F¢ (daily) transient excur-
sions as (daily) pole-frequency period.”

Noting the above, the form chosen for G(x), meeting all three
assumptions, was unusually simple:?

. A
<-|(wp7) . xl)

A = order of fractional integration

G (x)

1l

Inserting this in Eq. (11), and separating integrals at the pole:

wp‘,,T s 02 A
E(Fo)y |, = Cy f " {Sm . _x dx

2 A
0 | x (wp N X)

“FT A1
+Cy f
wWonT

sin? (x) X e

2 _ VA
X (x prT)

(13)

2The form is not rigorously established; measured data and source

characteristics at these extremes are too scarce. The form is simply
one (of possibly many) that meets the assumptions, as based on
available data.



To obtain an upper bound (disposing of considerable numeri-
cal complication), let:

sin? (x) _

)C2

1

This gives (7 cancels out) the bound (with parameter
interchange):

@ A
E(FoP ]y <Gy T [ X ax
o N [wp, - X]'7°

+C ij _x dX
N w (X - wp >A
Py v (14)

The first integral is of the fractional calculus form,? leading to
a constant, as transiently observed. The second leads to a log
ratio and trailing series, the latter insigniticant if A is small.
The slightest A converges the integral (solution of Eq. (10)):

E {(Fo)*}y LAOFHTA-D -

Cy A wPN
(.OF K
Pk +M)|T - (—) (15)
o wP\’
”KZ‘ FF & K)-K

normally insignificant, A <1

Expression (15)* does not admit to small values of Fo,
occasionally observed (Fig. 3, early data), if A small, as
required. It is but a maximum rms amplitude constant: some
other snap-action parameter is determining it is quasi-period
level. The parameter seems, at this point, to have three

The expression is a specific expression ot the “Riemann-Liouville”
tfractional calculus integral (about 1858).

4Note that the A function is independent of wp first-term amplitude
is not attected by pole location. N

common states: small, large +, and large -. The resulting F¢
model, with this unknown parameter, is therefore:

CO+A)FT(1-4y) w
E (Fg}, ~ /CN/ 5 N b log ZJ;F_
N

X {4y}

N = index of period (F¢ transition count)
CN = F¢ variance (site noise constant), during V.

A, = spectrum fractional integration parameter
(Ay << 1, possibly site-constant) for DSN 11
data, A~ 0.057.

wp = noise bandwidth of mean power

wp, = apparent pole frequency during V.

A, = unknown step parameter with three apparent
states: (0,+1,-1) 5% (16)

To conclude, the F¢ function is hardly rigorously determined.
However Eq. (16) does provide a lead-in to its understanding,
and represents a convergent solution to Eq. (10). For a more
definitive model, extensive data would be required.

IX. Summary and Conclusions

(1) The Allan variance technique leads to predictable
expected doppler noise values. The values depend upon
DSN site-dependent parameters, and these numbers
must be determined, for each location, in noncoherent
mode. An appropriate algorithm is in process.

(2) The present DSN site secondary-frequency-standards
severely contaminate — even mask - the true system
noise, particularly during short measurement periods.
The desired system measure is severely degraded by this
source.

(3) The doppler mean-offset-frequency is quasi-stable, but
erratic on a long-term scale. Available data are insuffi-
cient for a thorough analysis, and all models are
non-convergent unless an arbitrary high-pass filter is
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added. This parameter is a maverick, expressing the (4) The mean-offset frequency above has a large mission

finite reality of an infinite theoretical prediction. The significance. It is the velocity error of the spacecraft, as
fractional-integration model herein is but one of many contributed by the DSN sites. It would be expedient to
possible descriptions. locate and stabilize its sources.
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Table 1. Doppler spectral elements

Order LH () 12 Probable source
0 1 System
residual %0
2 Secondary
2 ljew standard
3 and
3 e system

Table 2. Frequency standard models

Ordinate/symbol Model Expression/definition
“F (X K CF (X)
A .
o? (—ﬁ) K [ S dx + = C— ax
T o 3 T 2
0 0
1
~ a2 (ﬁ) ,
F , 1
= Ko +?
Frequency
:/tdnddr(:l wCT F(‘ X KO " Fc X)
ariance 3 % 4 dx + dx
0 x3 w T x2
0 4
w T
¢
K
T it T7<T,
3 ¢ Break point (T(.)
approximation
K it T>T pp
0 4
ﬁ( (X) 1,2,3 Sampling power function, Allan variance:
[~ cos (X)]?
1\'0. Kl 1,2 Third- and second-order noise constants, dimensioned to yield [deg/sec] 2
Kb, K] 1,3 KO and K1 with integral limit values included
w, 2 Cross-over frequency = l/TC
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Table 3. Prime variance data

Point T, sec U?A“an)
1 1 15.56
2 10 49.34
3 60 219
4 120 504

Table 4. Parameter iteration using DSS i data

Parameter Initial range Initial value Final value
%0 0< % <10 5 2.0
KO 10<K0<25 20 13.52
Wy 0.05 <wy<0.5 0.05 0.1486
K, 5<K;<20 20 11.87
p 0.01 < w, <0.05 0.01 0.0294
I'ms error 0.2850 0.0116
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Fig. 3. Phase waveform of DSS 11 F¢ break point, Day 17



